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The proton, deuteron, and triton masses can be determined relative to the electron mass via rovibrational
spectroscopy of molecular hydrogen ions. This has to occur via comparison of the experimentally measured
transition frequencies and the ab initio calculated frequencies, whose dependence on the mass ratios can be
calculated precisely. In precision experiments to date (on HD+ and H2

+), the transitions have involved the ground
vibrational level v = 0 and excited vibrational levels with quantum numbers up to v′ = 9. For these transitions,
the sensitivity of the ab initio frequency to the high-order QED contributions is correlated with that to the
mass ratios. This prevents an efficient simultaneous determination of these quantities from experimental data,
so the accuracy of the mass ratios is essentially limited by the theoretical uncertainty. Here we analyze how the
accuracy of mass ratios may be improved by providing experimental transition frequencies between levels with
larger quantum numbers, whose sensitivity to the mass ratio is positive rather than negative, or close to zero.
This allows the unknown QED contributions and involved fundamental constants to be much more efficiently
determined from a joint analysis of several measurements. We also consider scenarios where transitions of D2

+

are included. We find these to be powerful approaches, allowing us in principle to reach uncertainties for the
mass ratios approximately three orders smaller than reported by CODATA 2018. Improvements by a factor of
3.5 for the Rydberg constant, and 11 (14) for the proton (deuteron) charge radius, are also projected.

DOI: 10.1103/PhysRevA.109.042825

I. INTRODUCTION

The precision spectroscopy of the molecular hydrogen
ion (MHI) HD+ has made significant progress in the past
few years. The combination of recently obtained experi-
mental [1–5] and theoretical results [6] on the transition
frequencies permits extracting one fundamental constant, the
reduced proton-deuteron mass relative to the electron mass
μpd/me. The current uncertainty from MHI spectroscopy,
u([μpd/me]expt,HD+ ) � 2.5 × 10−8 [5,7], is competitive with
direct mass measurements using Penning traps [8–11]. The ac-
curacies of some of the experimentally determined transition
frequencies are already higher than those of the theoretical
predictions. Hence, the latter limit the accuracy of the deter-
mination of μpd/me. The theoretical uncertainty is dominated
by unknown high-order QED contributions [6].

The question arises as to what the fundamental limitations
are to the attainable uncertainties in the determination of the
mass ratios, as well as of other constants, using any possible
future result of MHI spectroscopy. The question was first
addressed in an earlier analysis [12], where different mea-
surement scenarios were considered. A scenario that included
three HD+ transitions and two H2

+ transitions (assumed to
have been measured with fractional uncertainties 1 × 10−12),
with no other experimental input data, and assumed 3 × 10−12

theory uncertainty resulted in a proton-electron mass-ratio
uncertainty u(mp/me) � 1.5 × 10−8.

In the present study, we seek to break the correlation
between the theoretical uncertainties of the transition fre-
quencies due to uncalculated terms. The existence of this
correlation was first emphasized in Ref. [12]. Alighanbari
et al. [5] observed that the correlation is partially removed
when computing ratios of theoretical transition frequencies
between levels of not-too-disparate vibrational quantum num-
bers. The agreement between theoretical and experimental
ratios exhibits a particularly small combined uncertainty.

Two different approaches are used in our study: (i) a sim-
plified approach, in which the unknown QED contributions
are treated as a single parameter to be determined by solving
a system of linear equations, and (ii) a least-squares adjust-
ment, similar to CODATA [13] and Ref. [7], where QED
contributions to the different transition frequencies are treated
as adjustable parameters. We also propose to include quali-
tatively different vibrational transitions in the measurement
program and discuss several scenarios, i.e., sets of transitions
measured on different MHIs.

Figure 1 summarizes the current situation and presents one
main idea of this paper. The figure displays, for six transitions
of HD+, the correlation between the unknown (uncalculated)
QED contribution and the mass-ratio value deduced from
requiring the theoretical frequency to match the experimental
frequency. The four transition frequencies measured to date
(green, light blue, brown, and gray) have a similar relationship
between mass uncertainty and QED uncertainty: The bands
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FIG. 1. Determination of the nuclear-electron mass ratio of HD+

from single transition frequencies. Shown are four already measured
transitions f0, f1, f5, and f9 and two hot-band transitions consid-
ered for future measurement, X :(v = 9, N = 1) → (v′ = 18, N ′ =
0) and Y :(7, 1) → (15, 0). Here fX (red) is a positive-mass-
sensitivity transition and fY (blue) is a suppressed-mass-sensitivity
transition. Note that the band slope is similar for f0, f1, f5, and f9 be-
cause the abscissa is the normalized QED contribution �nuc,QED/0.32
[see Eq. (14)]. The width of each band takes into account (1) the un-
certainty of the theoretical transition frequency due to the uncertainty
of the Rydberg constant and the uncertainties of the rms charge radius
of the proton and deuteron, (ii) the uncertainty of the experimen-
tally measured frequency, and (iii) the uncertainty of the hyperfine
structure theory. For the four measured transitions, the experimental
results f (expt) and theoretical results with CODATA 2018 constants
f (theor)
2018 have been used in the plot. For the proposed transitions (red

and blue bands) we have assumed a hypothetical perfect match
f (expt) = f (theor)

2018 , experimental uncertainties u( f (expt)
X ) = u( f (expt)

Y ) =
0.3 kHz, and spin theory uncertainty 0.035 kHz. The yellow shaded
range indicates the estimated normalized uncertainty of the unknown
QED contribution to the theoretical transition frequency, stemming
from the three contributions u(δ fQED,1), u(δ fQED,2), and u(δ fQED,3)
(see the text for details). The horizontal black dashed lines indicate
the ±1 standard uncertainty interval of the value of μpd/me according
to CODATA 2018. The dark cyan dotted lines represent the ±1
standard uncertainty interval of μpd/me derived from Penning trap
measurements. It is computed from the uncertainties of the atomic
mass of the electron [8] (modified as in [14]), of the atomic mass of
the deuteron [10], and of the proton-deuteron mass ratio [11].

have similar slopes. Considering each measured frequency
independently, as well as the estimated uncertainty of the
QED contributions (yellow band), we can derive a value
for the mass ratio with uncertainty u([μpd/me]expt,HD+ ) �
2.5 × 10−8. This is substantially determined by the QED
uncertainty.

The similar band slopes imply that even when the four tran-
sitions are taken together, they are not particularly effective
in reducing the uncertainty of the mass ratio. If, however, a
suitably chosen additional transition frequency is introduced,
whose slope is qualitatively different ( fX , red band), then a si-
multaneous determination of both the mass correction and the
QED correction with reduced uncertainty becomes possible.
This will be discussed in detail in the following.

A. Theoretical transition frequencies

We consider only the so-called spin-averaged rovibra-
tional frequencies. This is reasonable since it has been shown

theoretically that the contribution of hyperfine energies can
be completely eliminated by measuring the complete set of
hyperfine components of a transition and then applying a
sum rule [15]. A demonstration was recently given in [16].
The ab initio theory of the spin-averaged frequency is well
developed [6]. A spin-averaged theoretical frequency may be
decomposed as

f (theor) = fnr(R∞, {mi/me}) + δ fQED(R∞, α, {mi/me})

+ δ fnuc({ri}) + δ fnuc,ho, (1)

where the important dependences on fundamental constants
are indicated. Here R∞ is the Rydberg constant, mi is the mass
of a nucleus (proton, deuteron, or triton), me is the electron
mass, α is the fine-structure constant, and ri is the charge
radius of a proton, deuteron, or triton. In addition, all terms
in the equation are functions of the vibrational and rotational
quantum numbers of the lower (v, N ) and upper (v′, N ′) rovi-
brational levels; they will be indicated explicitly below. The
first term fnr is the nonrelativistic transition frequency, arising
from the solution of the three-body Schrödinger equation.
The second term δ fQED contains all energy corrections due
to relativistic and QED effects. The third term is the leading-
order finite-nuclear-size shift. Finally, the fourth term δ fnuc,ho

contains small nuclear corrections of higher order, whose de-
pendences on fundamental constants may be neglected. The
fundamental constants displayed in the equation above repre-
sent the dominant dependences.

MHI spectroscopy can be exploited to determine one or
more of the above fundamental constants from the comparison
of a set of experimentally measured transition frequen-
cies { f (expt)

k } and their theoretical counterparts { f (theor)
k }. We

therefore first discuss qualitatively the impact of theoretical
uncertainties and uncertainties of the fundamental constants
on the four terms of f (theor)

k .

B. Uncertainty of the theoretical prediction

To begin with, we consider the uncertainties stemming
from the involved fundamental constants. All terms in Eq. (2)
are proportional to the Rydberg constant; however the impact
of its current uncertainty (reported by CODATA 2018 [14]) is
mainly on the first term, since the second largest term δ fQED

is approximately 5 × 104 times smaller than the first. The
uncertainty of the mass ratios therefore also affects mostly
the first term. Since we actually wish to determine mass ra-
tios more accurately than provided by CODATA 2018, the
sensitivity of fnr to the mass ratios, i.e., the partial deriva-
tives ∂ fnr/∂ (mi/me), are important quantities. They have been
computed in a number of works, e.g., [17,18]. Since the fine-
structure constant does not enter fnr except via R∞, its current
uncertainty is not relevant in fnr.

The third term δ fnuc is equal to the difference of the finite-
nuclear-size shifts in the upper and lower levels. The shift
of each energy level is proportional to the expectation value
of the delta potential Vδ,i = δ(re,i ) of the electron at nucleus
i, i.e., to the probability density at the nucleus. Here 〈Vδ,i〉
is expressed in atomic units. Its values can be accurately
calculated. The nuclear-size shift for a heteronuclear MHI is
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TABLE I. Some transitions of HD+ and their properties. The first one is a rotational transition and the others are vibrational transitions.
The last four entries are hot-band transitions. Transition 5 is the only one listed that has a positive s. Here λ = μpd/me, Vδ ≡ Vδ,pd , and
�Vδ ≡ �Vδ,pd .

Transition Frequency s V �V
No. (v, N ) → (v′, N ′) f (THz) fnr,a.u. ∂ fnr,a.u./∂λ 〈Vδ〉v′,N ′ − 〈Vδ〉v,N 〈�Vδ〉v′,N ′ − 〈�Vδ〉v,N

1 (0, 0) → (0, 1) 1.31 0.000200 −1.611 × 10−7 −0.0003698 2.0 × 10−10

2 (0, 0) → (1, 1) 58.6 0.00891 −3.526 × 10−6 −0.009850 −6.8 × 10−6

3 (0, 0) → (5, 1) 260 0.0395 −1.363 × 10−5 −0.04187 −0.000057
4 (0, 3) → (9, 3) 415 0.0631 −1.816 × 10−5 −0.06460 −0.00018
5 (9, 1) → (18, 0) 208 0.0316 8.272 × 10−6 −0.02868 −0.0043
6 (7, 1) → (15, 0) 237 0.0360 −3.113 × 10−8 −0.03373 −0.00095
7 (9, 1) → (13, 0) 118 0.0180 −1.027 × 10−7 −0.01671 −0.00036
8 (5, 1) → (13, 0) 278 0.0422 −5.242 × 10−6 −0.04059 −0.00049

given by [19]

δ fnuc = 2cR∞(2π/3)a−2
0

[
r2

1 (〈Vδ,1〉v′,N ′ − 〈Vδ,1〉v,N )

+ r2
2 (〈Vδ,2〉v′,N ′ − 〈Vδ,2〉v,N )

]
, (2)

where r1 and r2 are the charge radii of the two nuclei. The
value of δ fnuc is uncertain because of the uncertainties of r1

and r2. The density values 〈Vδ,i〉v,N decrease as the vibra-
tion becomes more excited (larger v), because the molecule
becomes more stretched. For HD+, 〈Vδ,i〉v,N=0 varies from
approximately 0.21 for v = 0 to approximately 0.17 for v = 9
to approximately 0.16 for v = 18. For the following, it is
important to note that the values for proton and deuteron are
close, differing only by 0.14% or less for v � 9 and by 1.5%
for v = 18.

The following nuclear charge radius data have been recom-
mended by CODATA 2018 [14]:

r2
p,2018 = 0.7080(32) fm2,

r2
d,2018 = 4.5283(31) fm2. (3)

The two uncertainties are almost perfectly correlated, because
the deuteron-proton radius difference r2

d − r2
p is strongly con-

strained by the measurement of the isotope shift of the 1S-2S
transition in H and D. Its recommended value is(

r2
d − r2

p

)
2018 = 3.820 36(41) fm2. (4)

We can reexpress Eq. (2) as

δ fnuc = 2cR∞
2π

3
a−2

0
1
2

((
r2

1 + r2
2

)
[〈Vδ,1〉v′,N ′

+ 〈Vδ,2〉v′,N ′ − (〈Vδ,1〉v,N + 〈Vδ,2〉v,N )]

+ (
r2

1 − r2
2

)
[〈Vδ,1〉v′,N ′ − 〈Vδ,2〉v′,N ′ − (〈Vδ,1〉v,N

− 〈Vδ,2〉v,N )]
)

= 2cR∞
2π

3
a−2

0
1
2

[(
r2

1 + r2
2

)
(〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N )

+ (
r2

1 − r2
2

)
(〈�Vδ,12〉v′,N ′ − 〈�Vδ,12〉v,N )

]
, (5)

with the notations 〈Vδ,12〉 = 〈Vδ,1 + Vδ,2〉 and 〈�Vδ,12〉 =
〈Vδ,1 − Vδ,2〉.

For homonuclear MHIs the second term in square brackets
is zero by definition. In order to keep the analytical model
simple, for heteronuclear MHIs we ignore the nominal value

of the second term, i.e., its value for ri = ri,2018. For actual
computations it could easily be included. We also neglect
its uncertainty, which can be justified as follows. In a given
fit scenario, we obtain the order of magnitude of the uncer-
tainty of the combination r2

1 + r2
2 appearing in the first term.

The uncertainty of the combination r2
1 − r2

2 will be similar
or smaller for some scenarios, e.g., when both HD+ and
H2

+ data are included. In any case, the multiplying factor
〈�Vδ〉v′,N ′ − 〈�Vδ〉v,N is a factor of at least 6 smaller than
〈Vδ〉v′,N ′ − 〈Vδ〉v,N (see column 7 in Table I). Thus, we may
neglect the uncertainty of the second term in square brack-
ets compared to the uncertainty of the first term. We may
improve on this approximation in an extended model, where
we would incorporate the experimental results from H or D
spectroscopy, i.e., the result (4) together with its uncertainty,
in the second term. Its uncertainty would then be negligible.

Thus, the uncertainty of δ fnuc is approximately

u(δ fnuc) � 2cR∞(2π/3)a−2
0

1
2 u

(
r2

1,2018 + r2
2,2018

)
(〈Vδ,12〉v′,N ′

− 〈Vδ,12〉v,N )

= 15.6 kHz × (〈Vδ,pd〉v′,N ′ − 〈Vδ,pd〉v,N ) (HD+)
(6)

= 15.7 kHz × (〈Vδ,pp〉v′,N ′ − 〈Vδ,pp〉v,N ) (H2
+). (7)

In the second line, for HD+, we inserted the uncertainty
u(r2

p,2018 + r2
d,2018) = 0.0063 fm2, where correlation has been

taken into account.
We now discuss uncertainties of purely theoretical origin.

They mainly concern the QED correction δ fQED and arise
dominantly from QED contributions of high order in α (R∞α6

and above). An important point is that the largest sources of
uncertainties are described by terms that are also proportional
to 〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N [6]. The largest one is the higher-
order remainder of the one-loop self-energy correction, which
has an estimated uncertainty

u(δ fQED,1) = 2cR∞ × 41.2α6(〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N )

= 40.9 kHz × (〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N ). (8)

The second largest source of uncertainty is the higher-order
remainder of the two-loop QED correction. The uncertainty
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associated with this term is

u(δ fQED,2) = 2cR∞ × 90.1
α6

π
(〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N )

= 28.5 kHz × (〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N ). (9)

A smaller uncertainty in δ fQED arises from the fact that
some of the QED corrections at orders R∞α4 and R∞α5 have
been computed in the adiabatic approximation. This is the
case for the relativistic correction of order R∞α4 [20] and
for the one-loop self-energy and vacuum polarization at order
R∞α5 [21,22]. The corresponding uncertainties are estimated
from the relative difference between the expectation values of
an operator of the type Vδ,12 calculated in the adiabatic approx-
imation on the one hand and in an exact three-body approach
on the other hand. These uncertainties are not proportional
to 〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N . Moreover, they have very different
dependences on the rovibrational degrees of freedom: They
are small for transitions between low-lying states and increase
when more excited states are involved, whereas 〈Vδ,12〉v,N

decreases with v and N . Due to this, the theoretical errors
affecting different transitions are only imperfectly correlated.
However, even for transitions between high-lying states, un-
certainties associated with the adiabatic approximation remain
much smaller than those from uncalculated higher-order terms
[Eqs. (8) and (9)], so the theoretical uncertainties of all the
transitions considered in this work are strongly correlated to
each other (see Table IV). This is why in Sec. II we neglect
uncertainties due to the adiabatic approximation, allowing
unknown theoretical contributions to be described by a single
unknown parameter. This simplified model yields analytical
formulas for the uncertainties of fundamental constants as
determined from HMI spectroscopy, which is very useful to
guide the choice of an optimal set of transitions. The results
of this model are verified by performing a least-squares adjust-
ment (LSA) where imperfect correlations between theoretical
uncertainties are taken into account (see Sec. III).

There are two other smaller sources of uncertainty from
unknown QED contributions. One is a yet uncalculated part
of the recoil correction of order R∞α4(me/mi ), with estimated
uncertainty [20]

u(δ fQED,3) = 2cR∞α4 π

16

(
(〈Vδ,1〉v′,N ′ − 〈Vδ,1〉v,N )

me

m1

+ (〈Vδ,2〉v′,N ′ − 〈Vδ,2〉v,N )
me

m2

)
. (10)

This can be reexpressed in terms of 〈Vδ,12〉 and 〈�Vδ,12〉
similarly to the nuclear-size shift [Eq. (5)]. Again, the term
proportional to 〈�Vδ,12〉 is either zero for homonuclear ions or
much smaller for heteronuclear ones and may be neglected.
The uncertainty then simplifies to

u(δ fQED,3) = 2cR∞α4 me

μ12

π

32
(〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N )

= 1.5 kHz × (〈Vδ,pd〉v′,N ′ − 〈Vδ,pd〉v,N ) (HD+)

(11)

= 2.0 kHz × (〈Vδ,pp〉v′,N ′ − 〈Vδ,pp〉v,N ) (H2
+),

(12)

where μ12 = m1m2/(m1 + m2).
Finally, the higher-order nuclear correction δ fnuc,ho [last

term in Eq. (2)] is negligibly small for the proton. Only the
corrections for the deuteron are included in the theoretical
transition frequency, with a small associated uncertainty of [6]

u(δ fnuc,ho) = 0.45 kHz × (〈Vδ,d〉v′,N ′ − 〈Vδ,d〉v,N )

� 0.23 kHz × (〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N ). (13)

The combined uncertainty of the contributions given in
Eqs. (7)–(9), (12), and (13) is u0(k)(〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N )k ,
where u0(HD+) � 52.2 kHz and u0(H2

+) � 52.3 kHz, which
includes a 49.9-kHz contribution from purely theoretical un-
certainties and a 15.6-kHz contribution due to the uncertainty
of nuclear charge radii in HD+ (15.7 kHz in H2

+). For the
vibrational transitions in Table I the purely theoretical part
corresponds to a fractional frequency uncertainty of approx-
imately 8 × 10−12. This is a main result of the theory in
Ref. [6]. Note that the value of the theoretical uncertainty has
no influence on results deduced from the analytical model (see
the next section) but is important for the approach based on a
LSA (Sec. III).

One last point related to theoretical uncertainties is worth
mentioning. Whereas all contributions to theoretical transition
frequencies so far have been computed with negligibly small
numerical uncertainties, this may be much harder to achieve
for some of the transitions studied in this work, which involve
levels with high vibrational quantum numbers such as v = 18
(see Tables I and II). In particular, accurate calculation of the
nonrelativistic Bethe logarithm [23] for such states is a very
serious numerical challenge. However, this obstacle is not of
a fundamental nature, and in the present exploratory analysis
we will assume that it can be overcome in the future.

II. ANALYTICAL MODEL

A. Master equation

Above we clarified that the combined uncertainty of the
transition frequency arising from nuclear and QED effects is,
to a good approximation, proportional to the δ-potential differ-
ence of lower and upper spectroscopy levels. This is the key
point for our analytical model. We recast this uncertainty as an
unknown correction to be determined from experiments. To
quantify the correction, we introduce the species-dependent
dimensionless parameter �nuc,QED(k) that describes the com-
bined deviations from the “best” theory values,

�nuc,QED(k)(〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N )k (2cR∞α5)

= �(δ fnuc + δ fnuc,ho + δ fQED,1 + δ fQED,2 + δ fQED,3),

where k denotes the molecular species. �δ fi is the unknown
deviation of the actual contribution of type i from the currently
calculable one.

According to the discussion above, the recoil correction
δ fQED,3 is species dependent. There are different possibilities
for its treatment. The correction is amenable to an ab initio
calculation [24], and this calculation is expected to be easier
than reducing u(δ fQED,1) or u(δ fQED,2). In this case, we would
be allowed to ignore the correction in the present context.
Alternatively, we could incorporate the recoil correction into
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TABLE II. Some rovibrational transitions of H2
+ and their properties. The first transition has recently been observed [16]. Transitions 2

and 3 have substantial positive sensitivity s. Transition 4 has a suppressed sensitivity. In this table, Vδ ≡ Vδ,pp.

Transition Frequency s V
No. (v, N ) → (v′, N ′) f (THz) fnr,a.u. ∂ fnr,a.u./∂ (mp/me) 〈Vδ〉v′,N ′ − 〈Vδ〉v,N

1 (1, 0) → (3, 2) 124 0.0189 −4.531 × 10−6 −0.02049
2 (11, 0) → (13, 2) 53.4 0.00811 1.516 × 10−6 −0.007464
3 (12, 0) → (14, 2) 45.9 0.00698 2.284 × 10−6 −0.006314
4 (9, 0) → (11, 2) 67.7 0.0103 1.572 × 10−7 −0.009773

�nuc(k). With any of these treatments, we may write

�nuc,QED(k) = �nuc(k) + �nuc,ho(k) + �QED,

where all quantities are dimensionless and independent of the
levels and �QED is also independent of the molecule species.

The Rydberg constant is also affected by uncertainty. We
introduce the fractional deviation with respect to the CODATA
2018 value �h = R∞/R∞,2018 − 1.

In summary, we may express a theoretical spin-averaged
frequency as

f (theor)(v, N, v′, N ′)

= f (theor)
2018 (v, N, v′, N ′)+2cR∞,2018

(
�h f (theor)

2018,a.u.(v, N, v′, N ′)

+
∑
i=1,2

�m,i∂ f (theor)
2018,a.u.(v, N, v′, N ′)/∂ (mi/me)

+ �nuc,QEDα5(〈Vδ,12〉v′,N ′ − 〈Vδ,12〉v,N )

)
, (14)

where �m,i = mi/me − (mi/me)2018 and the molecule-species
dependence k is implicit. Here f (theor)

2018 (v, N, v′, N ′) is the ab
initio transition frequency computed with the CODATA 2018
fundamental constants and no uncertainty is associated with
it. A subscript a.u. indicates that the frequency is expressed in
atomic units. The above master equation is a generalization
of Eq. (16) of Ref. [20]. (While the master equation has
been stated with CODATA 2018 values, these are just refer-
ence values; the equation would be just as applicable if we
used CODATA 2014 reference values instead.) There is one
such master equation for each MHI species. For homonuclear
MHIs, appropriate simplifications hold. Considering all six
MHI species (enumerated by the index k), there are ten un-
known parameters �m,p, �m,d , �m,t , {�nuc,QED(k)}, and �h.

The master equation is approximate, since we have explic-
itly neglected some terms that arise for heteronuclear MHIs
and because additional small uncertainties are present in the
theoretical transition frequency that stem from the use of adi-
abatic wave function to calculate several QED contributions
and do not have the simple form of the last term in Eq. (14).
For exploratory analyses such as the present one, in the second
and third lines of Eq. (14), f (theor)

2018 may be replaced by fnr,
the theoretical nonrelativistic frequency. The latter can be
approximated by the adiabatic transition frequency, obtained
by solving the one-dimensional radial Schrödinger equation
with the adiabatic potential [25] appropriate to each species.

For heteronuclear MHIs, the two mass-deviation contribu-
tions from m1 and m2 may be approximately subsumed into a
single one concerning the reduced nuclear mass μ12,

�m,λ

∂ fnr,a.u.(v, N, v′, N ′)
∂λ

,

with λ = μ12/me and �m,λ = μ12/me − (μ12/me)2018. This
approximation is good, because the nonrelativistic transition
frequency is well approximated by the difference of the adia-
batic energies.

For reference, the current (CODATA 2018) uncertainties
of the mass-ratio deviations are u(�m,p,2018) = 1.1 × 10−7,
u(�m,d,2018) = 1.3 × 10−7, and u(�m,t,2018) = 2.7 × 10−7.
Furthermore, the (current) uncertainty of �nuc,QED

is u(�nuc,QED(HD+)) � 52 kHz/2cR∞α5 � 0.38, and
similar for H2

+. The uncertainty of λ = μpd/me is
u([�m,λ(HD+)]2018) = 5.6 × 10−8, or 4.6 × 10−11 in relative
terms. The uncertainty of this last quantity deduced from
recent Penning trap experiments [8–11] is moderately
smaller [7] (see Fig. 1). All of these uncertainties do not enter
the present treatment.

The Rydberg constant fractional uncertainty is
u(�h,2018) = 1.9 × 10−12. This is a relevant quantity only
in the simplest scenario outlined here, the measurement of a
transition pair (see Table I in the Supplemental Material [26]).

B. Transitions

Table I presents the relevant parameters for a number of
electric dipole allowed transitions of HD+. A few electric
quadrupole transitions of H2

+ having v′ − v = 2 are reported
in Table II.

The mass sensitivities, denoted by s or βλ in the following
sections, as well as the expectation values of the δ functions,
〈Vδ〉, are obtained from nonadiabatic (exact) nonrelativistic
calculations, a choice which may be relevant especially for
transitions involving large vibrational quantum numbers. To
compute the mass sensitivities, we follow an approach similar
to that of Ref. [17]. The Hamiltonian [Eq. (6) of [17]] is
reexpressed as a function of the variables μpd/me and mp/me

and then the derivatives are easily found to be equal to some
combinations of the kinetic energy operator expectation val-
ues. Their expressions can be found in Eqs. (13b) and (13c) of
Ref. [7].

Among the shown transitions of HD+ are those that have
already been studied experimentally to date, all having v = 0
as the lower level. In addition, a few hot-band transitions
are included. Transition number 5 (red in Fig. 1) occurs be-
tween highly excited vibrational levels: v = 9 and v′ = 18. It
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exhibits the opposite sign of the sensitivity s of the frequency
to the mass ratio compared to transitions having the ground
vibrational level as the lower level. Transition 5 is just one
of several such transitions. Also, we point out the existence
of transitions that have strongly suppressed sensitivity to the
mass ratio. Number 6 is an example that is shown in blue
in Fig. 1. Such transitions are obviously not effective in
determining the mass ratio. However, they are effective in
determining the QED contribution parameter �nuc,QED and
therefore, when part of a set of transitions, contribute to deter-
mining the mass ratio. An important aspect is that while s does
not scale with the transition frequency value, V is approxi-
mately proportional to it. This correlation has an important
consequence: �nuc,QED cannot be determined as accurately as
the mass ratio.

C. Determination of the mass ratios and Rydberg constant

If a large enough set of experimental transition frequencies
is available, a LSA of the quantities �m,μ, �nuc,QED(k), and
�h can be made using the master equation (14). Instead, for
the sake of simplicity, we consider the cases of minimal-size
data sets being available, so these quantities are obtained by
solving a linear system of equations.

The proposed measurement approach presented here is ap-
plicable not only to HD+ but also to all other MHI species,
whose vibrational transitions have not yet been determined
with laser spectroscopy with competitive accuracy. We have
analyzed several scenarios. Some of them are presented
in [26]. One is described in the following.

In view of the approximations made, projected uncer-
tainty levels obtained with the analytical approach should
be considered as indicative only. The analytical approach is
nevertheless very useful as it allows us to identify easily the
most promising transitions, as confirmed by comparison with
a LSA in Sec. III.

Two species

One scenario we consider comprises three transitions in
HD+ and two transitions in H2

+. This will allow us to de-
termine the five quantities μpd/me, mp/me, �nuc,QED(H2

+),
�nuc,QED(HD+), and R∞ that appear in the two correspond-
ing master equations. Once μpd/me and mp/me have been
obtained, the deuteron mass md/me becomes available. Data
from more than five transitions would be very useful for con-
sistency checks and would then be analyzed using LSA.

Let us first consider a general aspect of this scenario. Recall
the deviations �nuc,QED(H2

+) and �nuc,QED(HD+) in terms
of their contributions, the charge radii deviations, the QED
deviation, and the higher-order nuclear deviation (if present),

�nuc,QED(H2
+) = α−5(2π/3)a−2

0
1
2 × 2�

(
r2

p

) + �QED, (15)

�nuc,QED(HD+) = α−5(2π/3)a−2
0

1
2�

(
r2

p + r2
d

)
+ �QED + �nuc,ho(d ). (16)

Small corrections have been neglected. Note that �QED is
independent of the molecular species, under the assump-
tions made. We may compare the contributions on each
right-hand side, in other words, their uncertainties. The

uncertainty of the first contribution is of order 0.11. The
uncertainty of the second, u(�QED), is of order 50α ≈
0.37, according to Eqs. (8) and (9). Finally, u(�nuc,ho(d )) �
(0.23 kHz)/2cR∞α5 = 0.0017 [Eq. (13)]. Once fit results for
�nuc,QED(H2

+) and �nuc,QED(HD+) are obtained, we can ob-
tain from Eqs. (15) and (16) an approximate value for the
difference of the squared radii of the deuteron and proton,

�
(
r2

d

) − �
(
r2

p

) � 2(2π/3)−1a2
0α

5[�nuc,QED(HD+)

− �nuc,QED(H2
+) − �nuc,ho(d )]. (17)

The mentioned uncertainty of the last term sets the mini-
mum possible uncertainty of the left-hand side, 9 × 10−5 fm2.
This is a factor 4.5 less than the CODATA 2018 uncertainty
[Eq. (4)].

Table III shows the result of a particular measurement sce-
nario: three HD+ transitions found to be favorable (see [26])
and two transitions in H2

+. For frequency uncertainties at the
1-Hz level (last line in the table), the uncertainty of the Ryd-
berg constant is one order smaller than CODATA 2018, while
for μpd/me it is two orders and for mp/me it is three orders
smaller. The uncertainty of �nuc,QED(HD+) − �nuc,QED(H2

+)
is smaller than that of �nuc,ho(d ) (see the rightmost column
in the table). This implies an experimental uncertainty for
�(r2

d ) − �(r2
p) four times smaller than the CODATA 2018

uncertainty. These results are encouraging and will be verified
in the next section using a more rigorous approach.

III. SIMULATIONS OF FUNDAMENTAL CONSTANT
DETERMINATIONS USING LEAST-SQUARES

ADJUSTMENTS

The analysis presented in Sec. II relies on the assump-
tion that the combined uncertainty of a transition frequency
arising from nuclear and QED effects can be described by
a single term proportional to the δ-potential difference be-
tween the lower and upper levels. As already noted, this is
only approximately true, because one of the contributions to
the theoretical uncertainty cannot be written under this form,
namely, the uncertainty arising from the use of the adiabatic
approximation in the calculation of high-order QED correc-
tions. A more elaborate description that takes into account
the imperfect correlations between theoretical uncertainties of
different rovibrational transition frequencies is thus required
to verify the insights given by our simple analytical model and
obtain more precise estimates of achievable precision of fun-
damental constant determinations from MHI spectroscopy. In
the following, we use the linearized least-squares adjustment
procedure described in Appendix E of [13]. See also [7] for a
recent application to MHI spectroscopic data.

Each of the (hypothetical) transition frequency measure-
ments yields the following observational equations:

f (expt) .= f (theor) + δ f (theor) + βλ(λ − λ0) + βR∞c(R∞ − R∞0)

+ βri (ri − ri0), (18)

δ f
.= δ f (theor). (19)

The dotted equality sign means that the left- and right-hand
sides should agree within estimated uncertainties. In addition,
f (expt) and f (theor) are the experimental and theoretical tran-
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TABLE III. Analytical model: determination of the five quantities mp/me, λ = μpd/me, Rydberg constant, and nuclear QED corrections
�nuc,QED(H2

+) and �nuc,QED(HD+) by measuring five transitions, three in HD+ and two in H2
+. Columns 1–3 indicate the chosen transitions

of HD+ (a–c); columns 4 and 5 refer to the transitions of H2
+ (d and e). The transition labels are defined in previous tables. Column 6 lists the

assumed experimental uncertainties. The other columns give the absolute uncertainties of the determined quantities. Note that the fractional
uncertainty of the Rydberg constant ur (R∞) is equal to u(�h ). We used the abbreviations �HD+ = �nuc,QED(HD+) and �H2

+ = �nuc,QED(H2
+).

Transitions ua, ub, uc, ud , ue u(�m,λ) u(�m,p) ur (R∞) u(�HD+ ) u(�H2
+ ) u(�HD+ − �H2

+ )

a b c d e (kHz) (10−10 ) (10−10 ) (10−12)

3 4 5 1 2 0.3, 0.3, 0.3, 0.3, 0.1 130 220 55 2.7 2.7 0.11
3 4 5 1 2 0.1, 0.1, 0.1, 0.1, 0.03 44 74 18 0.91 0.89 0.037
3 4 5 1 2 0.03, 0.03, 0.03, 0.03, 0.03 13 26 5.5 0.27 0.27 0.018
3 4 5 1 2 0.003, 0.003, 0.003, 0.01, 0.01 1.3 5.5 0.55 0.027 0.027 0.0055
3 4 5 1 2 0.003, 0.003, 0.003, 0.003, 0.003 1.3 2.6 0.55 0.027 0.027 0.0018
3 4 5 1 2 0.003, 0.003, 0.003, 0.001, 0.001 1.3 2.2 0.55 0.027 0.027 0.0010
3 4 5 1 2 0.001, 0.001, 0.001, 0.001, 0.001 0.44 0.87 0.18 0.0091 0.0089 0.00061

sition frequencies, respectively. The latter is obtained using
reference, e.g., CODATA 2018, values of the involved fun-
damental constants: the mass ratio λ, the Rydberg constant,
and the nuclear charge radii ri. The dependence of the theo-
retical frequency on these constants is linearized around their
reference values λ0, R∞0, and ri0 using the sensitivity coeffi-
cients βλ = ∂ f (theor)/∂λ � ∂ f (theor)

nr /∂λ, βR∞ = f (theor)/cR∞,
and βri = ∂ f (theor)/∂ri. For heteronuclear molecules, Eq. (18)
contains an implicit summation over i, and λ ≡ μ12/me,
with μ12 the reduced mass of the nuclei. For homonuclear
molecules, λ ≡ mi/me, with mi the mass of a nucleus.

The theoretical uncertainty of the transition frequency is
accounted for by introducing the additive correction δ f (theor),
which is treated as an adjusted constant. A second input
datum with zero value (δ f ≡ 0) and uncertainty equal to
the estimated theoretical uncertainty is included in the LSA
[Eq. (19)].

We take into account correlations between different input
data. Measurements of different transitions are assumed to be
uncorrelated to each other, but theoretical uncertainties are
strongly correlated. The correlation coefficients among the δ f
are estimated using the results of [6] and can be found in
Table IV.

A. Two transitions in one species

We first consider the scenario where two transitions are
measured in HD+. Since in this case we are only aiming to
determine the mass ratio μpd/me, additional data are required
on the other involved fundamental constants R∞, rp, and rd .
We thus include the following observational equations:

R∞,2018
.= R∞, (20)

ri,2018
.= ri (i = p, d ). (21)

The correlation coefficients between the CODATA 2018
values of these constants are r(R∞,2018, rp,2018) = 0.885 92,
r(R∞,2018, rd,2018) = 0.903 66, and r(rp,2018, rd,2018) =
0.991 65. The total number of input data is N = 7 (two
experimental frequencies, two associated δ f , and the three
CODATA 2018 values), whereas the number of adjusted
constants is M = 6 (μpd/me, R∞, rp, rd , and the two δ f (theor)).
Results are displayed in the last column of Table I in [26].

As already indicated by the analytical model (see the Sup-
plemental Material [26]), we recognize the importance of the
choice of transition pair: (3,5) is substantially more favorable
than (3,4). The lowest LSA uncertainty among the examples
is approximately 3 × 10−9, a factor 8 lower than what is ob-
tained from two of the currently available measurements (last
row in the table) and a factor 19 smaller than the CODATA
2018 uncertainty.

In the case of H2
+, two measurements may already offer

the possibility to determine other constants in addition to
mp/me. However, two transitions are still not sufficient to
determine the three constants involved, mp/me, R∞, and rp,
and some additional input data is required. It would make
little sense to include the CODATA 2018 value of, e.g., rp in
order to determine mp/me and R∞ because the proton charge
radius is strongly correlated to the Rydberg constant by the
very precise measurements of the 1S-2S transition frequency
in the H atom [27,28]. We instead include these 1S-2S mea-
surements and associated theoretical δ f correction [similarly
to Eq. (19)] in our LSA using the information provided in [14]
(items A6 and A7 from Table X, B1 and B2 from Table VIII,
and their correlation coefficients from Table IX therein). The
uncertainty of the theoretical correction is 1.4 kHz. The total
number of input data is N = 7 [two H2

+ experimental fre-
quencies, two associated δ f , the two H(1S-2S) measurements,
and one associated δ f ], whereas the number of adjusted con-
stants is M = 6 [mp/me, R∞, rp, the two δ f (theor)(H2

+), and
one δ f (theor)(H)].

Results are displayed in Table V. We see that there is
no further gain in pursuing an experimental frequency un-
certainty smaller than 0.1 kHz. For that case, the mass-ratio
uncertainty, of order approximately 4.7 × 10−12 fractionally,
is 13 times smaller than the CODATA 2018 uncertainty.

B. Three transitions in one species

Similarly, three transition measurements in HD+ could be
used to determine the Rydberg constant and nuclear radii
rp and rd . To do this, we again include the H(1S-2S) mea-
surements [27,28], but also the H-D(1S-2S) isotope shift
measurement [29] (item A5 from Table X, B17 and B18
from Table VIII, and correlation coefficients from Table IX
therein). The theory uncertainty is set to 0.34 kHz. The total
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TABLE IV. Correlation coefficients between theoretical uncertainties of HD+ and H2
+ transition frequencies. The arguments are the

transition numbers, defined in Tables I and II.

Correlation coefficients

Among HD+ transitions

r(1, 2) = 0.99570 r(1, 3) = 0.98071 r(1, 4) = 0.95733 r(1, 5) = 0.91011 r(1, 6) = 0.86385
r(1, 7) = 0.84570 r(1, 8) = 0.87967 r(2, 3) = 0.99460 r(2, 4) = 0.97998 r(2, 5) = 0.94457
r(2, 6) = 0.90678 r(2, 7) = 0.89148 r(2, 8) = 0.91993 r(3, 4) = 0.99535 r(3, 5) = 0.97355
r(3, 6) = 0.94565 r(3, 7) = 0.93370 r(3, 8) = 0.95566 r(4, 5) = 0.99102 r(4, 6) = 0.97257
r(4, 7) = 0.96383 r(4, 8) = 0.97958 r(5, 6) = 0.99493 r(5, 7) = 0.99081 r(5, 8) = 0.99766
r(6, 7) = 0.99939 r(6, 8) = 0.99948 r(7, 8) = 0.99774

Among H2
+ transitions

r(1, 2) = 0.93922 r(1, 3) = 0.93365 r(1, 4) = 0.92866 r(2, 3) = 0.99987 r(2, 4) = 0.99956
r(3, 4) = 0.99991

Between HD+ and H2
+ transitions

r(1, 1) = 0.99083 r(1, 2) = 0.88436 r(1, 3) = 0.87684 r(1, 4) = 0.87018 r(2, 1) = 0.99904
r(2, 2) = 0.92377 r(2, 3) = 0.91758 r(2, 4) = 0.91206 r(3, 1) = 0.99804 r(3, 2) = 0.95852
r(3, 3) = 0.95388 r(3, 4) = 0.94969 r(4, 1) = 0.98748 r(4, 2) = 0.98149 r(4, 3) = 0.97833
r(4, 4) = 0.97541 r(5, 1) = 0.95759 r(5, 2) = 0.99826 r(5, 3) = 0.99721 r(5, 4) = 0.99610
r(6, 1) = 0.92378 r(6, 2) = 0.99905 r(6, 3) = 0.99960 r(6, 4) = 0.99987 r(7, 1) = 0.90982
r(7, 2) = 0.99696 r(7, 3) = 0.99806 r(7, 4) = 0.99881 r(8, 1) = 0.93566 r(8, 2) = 0.99990
r(8, 3) = 0.99993 r(8, 4) = 0.99976

number of input data is N = 11 (three HD+ experimental
frequencies, three associated δ f , the three H-D(1S-2S) mea-
surements, and two associated δ f ), whereas the number of
adjusted constants is M = 9 [μpd/me, R∞, rp, rd , the three
δ f (theor)(HD+), δ f (theor)(H), and δ f (theor)(H-D)].

Results are displayed in Table VI. The first case in the
table (data row 1) considers the three rovibrational transitions
measured to date. In this case, the uncertainty of the fitted
mass ratio μpd is not competitive because no input values of
the Rydberg constant and nuclear radii are provided. Among
the examples, the lowest LSA uncertainty for the mass ratio is
approximately 3 × 10−9, the same value as for the case of two
transitions only. Now, also the charge radii are determined,
but their uncertainties are approximately one order larger than
from muonic hydrogen and deuterium measurements.

TABLE V. Linearized LSA procedure. Listed are examples of
determination of mp/me, Rydberg constant, and proton charge radius
by measuring two transitions a and b in H2

+. The H(1S-2S) mea-
surements are included in the input data. Here ur denotes a fractional
uncertainty and u an absolute uncertainty.

Transitions ua, ub ur (mp/me) ur (R∞) u(rp)

a b (kHz) (10−12) (10−12) (fm)

1 3 0.3, 0.3 7.4 27 0.029
1 3 0.1, 0.1 4.7 25 0.027
1 3 0.03, 0.03 4.3 25 0.027
1 3 0.01, 0.01 4.2 25 0.027
1 3 0.003, 0.003 4.2 25 0.027
1 3 0.001, 0.001 4.2 25 0.027

CODATA 2018 60 1.9 0.0019

C. Two species

Here we consider the case where three transition measure-
ments in HD+ and two in H2

+ are available. In principle, this
is enough to determine the five quantities μpd/me, mp/me,
Rydberg constant, and proton and deuteron charge radii. The
LSA then comprises N = 10 input data (the five experimen-
tal frequencies and five associated δ f ) and M = 10 adjusted
constants (μpd/me, mp/me, R∞, rp, rd , and the five δ f (theor)).

Results are displayed in Table VII. We see that the
uncertainties “saturate” once the experimental frequency un-
certainties are at the 10-Hz level. There is no substantial
reduction of the uncertainty of the reduced proton-deuteron
mass ratio compared to the case of only three HD+ transitions;
however, a strong (sixfold) reduction in the uncertainty of the
proton-electron mass ratio compared to the case of only two
H2

+ transitions is obtained. The uncertainty of the deuteron
charge radius is now similar to the CODATA 2018 value. We
may compare Table VII with the corresponding Table III of
the analytical model. The latter overestimates the projected
reduction of uncertainties by a few orders, for the smallest
assumed experimental uncertainties. This is due to the as-
sumption of perfect correlations.

Alternatively, the HD+ data can be combined with the
H(1S-2S) and H-D(1S-2S) measurements to get more accu-
rate determinations. In this case, the number of input data is
N = 15 (adding the three H and D experimental frequencies
and two associated δ f with respect to the previous adjust-
ment), whereas the number of adjusted constants is M = 12
(adding the two H and D δ f (theor)).

Results are displayed in Table VIII. When the experimental
uncertainties are assumed to be 1 Hz (data row 9 in the
table), i.e., fractionally 2 × 10−14 to 2 × 10−15, depending on
the transition, the uncertainties plunge by impressive factors
compared to CODATA 2018: u(μpd/me) by a factor 600,
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TABLE VI. Examples of LSA of the four constants λpd = μpd/me, R∞, rp, and rd by measuring three transitions a, b, c in HD+. The
H(1S-2S) and H-D(1S-2S) isotope shift measurements are included in the input data.

Transitions ua, ub, uc ur (λpd ) ur (R∞) u(rp) u(rd )

a b c (kHz) (10−12) (10−12) (fm) (fm)

2 3 4 0.15, 0.6, 0.46 106 111 0.12 0.047
3 4 5 0.3, 0.3, 0.3 5.4 23 0.024 0.0095
3 4 5 0.03, 0.03, 0.03 2.2 17 0.018 0.0071
3 4 5 0.01, 0.01, 0.01 2.1 17 0.018 0.0070
3 4 5 0.003, 0.003, 0.003 2.1 17 0.018 0.0070
3 4 5 0.001, 0.001, 0.001 2.0 17 0.018 0.0070
3 5 6 0.003, 0.003, 0.003 3.0 19 0.021 0.0082
3 5 8 0.003, 0.003, 0.003 2.9 19 0.020 0.0081
3 6 7 0.003, 0.003, 0.003 2.4 18 0.019 0.0076
3 6 8 0.003, 0.003, 0.003 2.6 19 0.020 0.0078

CODATA 2018 46 1.9 0.0019 0.00074

u(mp/me) by a factor 1000, u(R∞) by a factor 3.5, u(rp) by
a factor 11, and u(rd ) by a factor 14.

Compared to two scenarios discussed earlier, (i), (iii)
in Ref. [12], the reduction of the uncertainties u(mp/me),
u(μpd/me), u(R∞) u(rp), and u(rd ) is by factors 72, 110, 6,
37, and 140, respectively, where now experimental uncertain-
ties are assumed to be two orders smaller, a different set of
MHI transitions, and inclusion of different hydrogen data are
considered.

It should be noted that already for experimental uncertain-
ties on the order of (2–5) × 10−13, one order lower than today
(data row 4 in the table), the uncertainties of the charge radii
and of the Rydberg constant would be a factor 2 smaller than
CODATA 2018 uncertainties and the mass-ratio uncertainties
a factor of approximately 25 smaller.

Finally, Table VIII also considers, in the last two data rows,
a possible substantial reduction in QED theory uncertainty.
This would mainly reduce the uncertainty of rd .

D. Transitions with weak sensitivity to the mass ratios

Related to the fact that in any species there are transitions
with positive and with negative sensitivity to the relevant mass
ratios, there are also transitions with small, in a few cases

very small, sensitivity. In H2
+, transition 4 has sensitivity 29

times smaller than for transition 1. The latter may be viewed
as a reference transition, exhibiting quasiharmonic sensitivity,
since its initial and final levels have small vibrational quantum
numbers. Another transition (6, 0) → (13, 2) has sensitivity
−6.504 × 10−9 a.u., approximately 1 × 103 times smaller. In
HD+, transition 6 has sensitivity approximately 110 times
smaller than reference transition 2, according to the nonadi-
abatic calculation.

The existence of such transitions opens up an addi-
tional opportunity: determination of only the set of constants
(R∞, rp, rd ), ignoring the mass ratios. In other words, the
mass ratios are not adjusted in the LSA. Keeping the present
analysis simple, we may omit the CODATA 2018 values as in-
put to the LSA, claiming that the current uncertainties of these
constants are small enough that their significance in the results
of the LSA would turn out to be small. This is certainly the
case, if the most appropriate transitions are chosen. CODATA
2018 values of the mass ratios are still used to compute the
theoretical transition frequencies that are input to the LSA.

We show in Table IX a LSA example. In comparison with
the result of Table VII that relied on five transitions, here the
obtained Rydberg constant uncertainty is similar, while the
radii’s uncertainties are less than a factor 2 larger. All three

TABLE VII. LSA determination of the five quantities λpd = μpd/me, mp/me, Rydberg constant, and proton and deuteron charge radii,
by measuring five transitions, three in HD+ (a, b, c) and two in H2

+ (d and e). No other input data are included. Columns 1–3 indicate the
chosen transitions of HD+; columns 4 and 5 refer to H2

+. The transition labels are defined in previous tables. Column 6 gives the assumed
uncertainties of the measured frequencies. Fractional or absolute uncertainties of the five adjusted constants are shown in columns 7–11.

Transitions ua, ub, uc, ud , ue ur (λpd ) ur (mp/me) ur (R∞) u(rp) u(rd )

a b c d e (kHz) (10−12) (10−12) (10−12) (fm) (fm)

3 4 5 1 2 0.3, 0.3, 0.3, 0.3, 0.1 3.8 8.9 43 0.068 0.0019
3 4 5 1 2 0.1, 0.1, 0.1, 0.1, 0.03 2.8 3.0 23 0.036 0.00099
3 4 5 1 2 0.03, 0.03, 0.03, 0.03, 0.03 2.7 1.3 19 0.030 0.00085
3 4 5 1 2 0.03, 0.03, 0.03, 0.01, 0.01 2.7 1.1 19 0.030 0.00082
3 4 5 1 2 0.003, 0.003, 0.003, 0.003, 0.003 2.7 0.68 19 0.030 0.00080
3 4 5 1 2 0.003, 0.003, 0.003, 0.001, 0.001 2.7 0.67 19 0.030 0.00080
3 4 5 1 2 0.001, 0.001, 0.001, 0.001, 0.001 2.7 0.67 19 0.030 0.00080

CODATA 2018 46 60 1.9 0.0019 0.00074
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TABLE VIII. LSA: similar to Table VII, but with H(1S-2S) and H-D(1S-2S) measurements included as input data. The last two scenarios
are computed for QED theory uncertainties 1 × 10−12, a factor 8 smaller than elsewhere in this work. The main effect is a reduction of the
uncertainty of rd .

Transitions ua, ub, uc, ud , ue ur (λpd ) ur (λp) ur (R∞) u(rp) u(rd )

a b c d e (kHz) (10−12) (10−12) (10−12) (fm) (fm)

2 3 4 1 2 0.3, 0.3, 0.3, 0.3, 0.1 29 6.4 15 0.016 0.0062
2 3 4 1 2 0.003, 0.003, 0.003, 0.003, 0.003 2.7 0.73 1.4 0.0014 0.00053
3 4 5 1 2 0.3, 0.3, 0.3, 0.3, 0.1 3.1 5.1 2.7 0.0029 0.0011
3 4 5 1 2 0.1, 0.1, 0.1, 0.1, 0.03 1.4 2.4 1.0 0.00096 0.00037
3 4 5 1 2 0.03, 0.03, 0.03, 0.03, 0.03 0.47 1.1 0.78 0.00060 0.00023
3 4 5 1 2 0.03, 0.03, 0.03, 0.01, 0.01 0.47 0.76 0.61 0.00031 0.00011
3 4 5 1 2 0.003, 0.003, 0.003, 0.003, 0.003 0.088 0.12 0.57 0.00019 0.000055
3 4 5 1 2 0.003, 0.003, 0.003, 0.001, 0.001 0.088 0.089 0.56 0.00019 0.000051
3 4 5 1 2 0.001, 0.001, 0.001, 0.001, 0.001 0.076 0.057 0.56 0.00019 0.000051

3 4 5 1 2 0.003, 0.003, 0.003, 0.003, 0.003 0.080 0.11 0.48 0.00015 0.000025
3 4 5 1 2 0.001, 0.001, 0.001, 0.001, 0.001 0.066 0.052 0.48 0.00014 0.000013

CODATA 2018 46 60 1.9 0.0019 0.00074

uncertainties are substantially smaller than those of CODATA
2018.

For the selected H2
+ transition 4 the impact of the CO-

DATA 2018 uncertainty of mp/me is ur ( fd ) = 2.7 × 10−13

and thus is twice smaller than the fractional uncertainty of the
adjusted Rydberg constant in the third scenario of the table.
The above assumption is thus still acceptable. If necessary,
one may select a H2

+ transition with weaker sensitivity.

E. Ratios of frequencies

When we consider different transitions in the same species
or in different species, we find pairs that have similar sensi-
tivity to the respective mass ratios. Furthermore, all transition
frequencies are proportional to the Rydberg constant. Finally,
the QED uncertainties are correlated. Then we may construct
ratios of frequencies in which these constants or contributions
are fully or partially suppressed. Frequency ratios are concep-
tually simple and therefore they are attractive for illustration
purposes. In Ref. [5] ratios of (experimentally available) HD+

TABLE IX. LSA for the determination of the Rydberg constant
and charge radii only. Two MHI transitions with low sensitivity to
the mass ratios are considered. The experimental inputs are one fre-
quency of HD+ (a, transition 6), one frequency of H2

+ (d , transition
4), and H(1S-2S) and H-D(1S-2S) isotope shift measurements. No
input from CODATA 2018 is used in the LSA. The uncertainties of
the adjusted constants are saturated when the experimental uncertain-
ties are reduced to 0.003 kHz.

Transitions ua, ud ur (R∞) u(rp) u(rd )

a d (kHz) 10−12 (fm) (fm)

6 4 0.1, 0.1 2.5 0.0026 0.0010
6 4 0.01, 0.01 0.63 0.00037 0.00013
6 4 0.003, 0.003 0.58 0.00027 0.000090
6 4 0.001, 0.001 0.58 0.00026 0.000085

CODATA 2018 1.9 0.0019 0.00074

frequencies were considered. Because appropriate ratios sup-
press the influence of QED uncertainties, it was argued that
they can be used as figures of merit for a test of quantum
mechanics.

Here we consider ratios of HD+ and H2
+ frequencies. By

proper choice of the transition pair, such a ratio may remove
the sensitivity to mp/me. Indeed, this sensitivity is present
also in HD+, where it is intertwined with the sensitivity to
md/mp. However, this latter ratio has been very precisely
measured [11] and its uncertainty is therefore of less concern.

By inspection, we found the HD+ transitions 11, i.e., (v =
0, L = 0) → (4, 1), and 12, i.e., (v = 1, L = 0) → (3, 1), to
have fractional sensitivities ŝmp/me = ( fnr )−1∂ fnr/∂ (mp/me)
very similar to that of reference transition 1 in H2

+ (ŝmp/me =
−2.3948 × 10−4). The HD+ sensitivities are ŝmp/me =
(−2.3791,−2.3907) × 10−4, respectively. The first HD+

transition is particularly easily accessible and has already been
utilized [30].

The analysis of the fractional deviation of the HD+ (11) to
H2

+ (1) frequency ratio

[ f11(HD+)/ f1(H2
+)](theor)

[ f11(HD+)/ f1(H2
+)](expt)

− 1 (22)

shows that the dominant uncertainty contributions of the the-
oretical ratio are (1.2, 0.78, 0.33) × 10−12, originating from
the uncertainties of rd (CODATA 2018), md/mp [11], and
QED theory, respectively. The contribution of u(rp,2018) is
smaller still. The experimental frequency uncertainties are
negligible in comparison, once smaller than 0.03 kHz.

Thus, in the context of today’s knowledge of fundamental
constants, this frequency ratio directly probes the value of
the deuteron charge radius. In contrast, in the ratio f5/ f1 of
two HD+ frequencies discussed in Ref. [5], the dominant
non-experiment uncertainties originate from QED theory and
μpd/me.

If the improvements in the uncertainty of rd and of the
mass ratios projected in the previous sections are realized at
a moderate level, a different interpretation may result. For
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TABLE X. LSA for the determination of five fundamental constants from three MHI species and H and D data. The experimental inputs
are one frequency of HD+ (a, transition 3), one frequency of H2

+ (d, transition 1), one frequency of D2
+ [f, transition 5, (1, 0) → (3, 2)], and

H(1S-2S) and H-D(1S-2S) measurements. No input from CODATA 2018 is used in the LSA. The last two scenarios are computed for QED
theory uncertainties 1 × 10−12, a factor 8 smaller than elsewhere in this work. For both levels of theory uncertainty, the uncertainties of the
adjusted constants saturate when the experimental uncertainties reach 0.003 kHz. A correlation coefficient of 0.99 between transitions a–f and
d–f has been assumed.

Transitions ua, ud , uf ur (μpd/me) ur (mp/me) ur (R∞) u(rp) u(rd )

a d f (kHz) (10−12) (10−12) (10−12) (fm) (fm)

3 1 5 0.6, 0.2, 0.2 19 19 5.9 0.0063 0.0025
3 1 5 0.03, 0.03, 0.03 18 19 1.5 0.0015 0.00060
3 1 5 0.003, 0.003, 0.003 18 19 1.5 0.0014 0.00056

3 1 5 0.03, 0.03, 0.03 2.6 2.7 0.79 0.00055 0.00022
3 1 5 0.003, 0.003, 0.003 2.6 2.7 0.63 0.00020 0.000085

CODATA 2018 46 60 1.9 0.0019 0.00074

improvements by factors of 7, the uncertainty of the theoreti-
cal ratio (22), approximately 3 × 10−13, would be dominated
by today’s QED uncertainty. Then the comparison of exper-
imental and calculated ratios would imply a test of quantum
physics at this noteworthy level.

F. Three species

We briefly discuss the scenario of three species that form a
closed triad, i.e., having only two distinct nuclei. We choose
the nonradioactive triad H2

+, D2
+, and HD+. We consider

only transitions between low-lying vibrational levels, for
which the QED contributions are more easily computable.

As can be seen from Table X, data row 2, using one transi-
tion per species, already for the current theory uncertainty and
assuming a 20-fold improvement of experimental uncertainty
compared to today, mp/me, the Rydberg constant, and the
proton and deuteron charge radii would be obtainable with
competitive uncertainties, without using muonic hydrogen
data as input data.

Moreover, a putative improvement in QED theory uncer-
tainty by a factor 8 would result in levels substantially below
CODATA 2018 for all five fundamental constants. In the last
scenario of the table, the fractional uncertainty ur (md/me) �
0.7 × 10−12.

IV. DISCUSSION AND CONCLUSION

Here we derived two main results. First, it is in principle
possible to determine mass ratios vastly more accurately than
known today (CODATA 2018). This could be accomplished
by, for example, measuring five MHI transitions with uncer-
tainty at the 1-Hz level. The set of transitions should include
transitions between highly excited vibrational levels.

Second, also the Rydberg constant and charge radii can in
principle be determined more accurately than known today,
provided that future MHI spectroscopy data are combined
with already available H and D spectroscopy data. Data on
the charge radii from muonic hydrogen spectroscopy are not
required. The radii values are adjusted to the MHI, H and D
data.

In order to arrive at the above conclusions, we performed
two different analyses. The first is an analytical model that
was kept simple in order to highlight that one can take
advantage of the correlated theory uncertainty for different
transitions. The number of experimental transition data con-
sidered was kept small and equal to the number of unknown
parameters to be determined in a particular scenario. We em-
phasized that in order to obtain accurate mass ratios, precise a
priori knowledge of the charge radii (from muonic hydrogen
spectroscopy) is not essential. In this model, the values of the
charge radii are fitted to the data, always in conjunction with
the QED corrections, in the form of the quantity �nuc,QED. If,
on the other hand, one would take into account the muonic hy-
drogen spectroscopy charge radii, the QED corrections �QED

and the higher-order nuclear size corrections for the proton
and the deuteron �nuc,ho could be obtained separately, from
Eqs. (15) and (16).

Within the analytical model we also showed that if more
than one MHI species is measured, it is in principle possible
to obtain the differences of squared charge radii of a pro-
ton, deuteron, and triton, with uncertainties comparable to
or smaller than CODATA 2018, using data from MHI spec-
troscopy only.

The second analysis was a LSA. It has the advantage of
being more flexible and powerful, for two reasons. First, it
allows one to take into account partial correlations of the
theory uncertainties. Second, one can include fundamental
constants results and/or data and theory from other systems.
Such inclusion is extremely favorable, as is evident from
the comparison of Tables VII and VIII. It is then that an
impressive improvement of accuracy of the five fundamen-
tal constants becomes possible in principle. If the projected
fractional uncertainty 6 × 10−14 for the proton-electron mass
ratio would be achieved, this would be the most accurately de-
termined fundamental constant, topping the electron g factor.

We highlight that one LSA scenario (Table X) consists
of just one highly accurate measurement (10-Hz uncertainty
level) on each member of the H2

+-HD+-D2
+ triad, in com-

bination with H and D data. This furnishes uncertainties
competitive with CODATA 2018 for the five fundamental con-
stants. Notably, the three vibrational transitions do not need
to involve large vibrational quantum numbers v. Thus, the
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computation of the theoretical frequencies with the assumed
uncertainty 8 × 10−12 will be possible using the already avail-
able QED theory techniques.

In the presented LSAs, we only considered scenarios in-
volving three of the six MHIs, HD+, H+

2 , and D2
+, but

obviously the treatment could be extended to MHIs that con-
tain the triton. We expect that its properties can in principle
also be determined with similar uncertainties as for the proton
and the deuteron in the considered scenario.

Many scenarios relied on vibrational transitions between
levels of large v. We caution that it will be challenging to
perform the ab initio computation of the corresponding tran-
sition frequencies at an uncertainty level of 8 × 10−12. It is
especially the Bethe logarithm that is challenging to compute
with sufficient accuracy [23].

Even if the measurement scenarios we have considered
allow us to (partially) circumvent limitations associated with
QED theory uncertainties, it remains beneficial to improve
the theory further, as shown, for example, by the last two
lines of Table X. This could be achieved through computation
of higher-order corrections to the one-loop self-energy and
two-loop corrections that are currently the largest sources of
theoretical uncertainty [6], but also by recomputing in a three-
body approach some corrections previously calculated in the
adiabatic approximation, which would increase the correla-
tions between uncertainties of different transition frequencies
(see the discussion in Sec. I B).

In order to achieve the mentioned impressive uncertainties,
we considered experimental frequency uncertainties (system-
atic and statistical combined) as small as 1 Hz, corresponding
to fractional frequency uncertainties in the 10−15 range.
Such levels appear achievable, as our earlier analyses have
shown [31,32].

Concerning the experimental feasibility of measuring a
hot-band transition frequency, we point out that in HD+ a
rovibrational level with v = 9 has a lifetime on the order of
10 ms. This is long enough to allow preparation of a MHI
in this level using, e.g., Rabi flopping. The spectroscopic
excitation should follow within a time interval of order 1 ms.
In the homonuclear MHI, the lifetime of all excited vibrational
levels is of the order of days (see Ref. [11] for observations)
and so the spectroscopy can take place after a longer wait time
and with slower rate.

In H2
+, the spectroscopy can be performed on electric

quadrupole (E2) transitions [33]. Recently, a rovibrational
transition has been observed [16], demonstrating feasibility.
Transitions to be addressed in future work would likely be
those with a small difference v′ − v, in order to achieve suf-
ficiently high Rabi frequency with available laser sources.
Among transitions having v′ − v = 2, (12, 0) → (14, 2) at

46 THz is one with positive-mass-ratio sensitivity, while
(9, 0) → (11,2) at 68 THz has suppressed mass-ratio sensi-
tivity. The E2 transitions are also suitable for the vibrational
spectroscopy of D2

+ and have been discussed theoretically in
detail [34].

In this work we also emphasized that powerful tests of
consistency of experimental values obtained from different
experiments may be performed; e.g., r2

p and r2
d obtained from

H2
+ and HD+ must be consistent with the values obtained

from the triad of D2
+, HT+, and DT+. Such tests could be

very important in order to uncover overlooked systematic
shifts and enhance confidence in the results.

The proposed approach leads to more accurate mass ratios
via comparison between experiment and theory prediction.
The values of these constants are functions of the forces
assumed to act between the particles contained in the MHI.
Consequently, the approach may also lead to more sensitive
searches for beyond-standard-model (BSM) forces between
the particles and more accurate tests of their wave properties,
topics that have been explored in recent studies [1,2,5,35].
The BSM signatures could appear in values of the obtained
Rydberg constant, mass ratios, or differences of squared radii,
which do not agree with measurements on the electronic and
muonic hydrogen isotopes and direct mass measurements.
One simple example of a BSM physics test is the comparison
of the charge radii from Table VIII, obtained from MHIs and
electronic H and D, with those obtained from muonic H and
D. The latter values were derived assuming conventional QED
for the muon-radiation field interaction and for the muon-
nucleus interaction. Any discrepancy between the two sets of
results could hint at BSM forces.

A BSM electron-nucleus interaction that depends on the
nuclear composition could be probed using data obtained only
from MHIs (as a violation of the relationship (3) in [26]) or as
inconsistent mass-ratio values obtained from different MHI
species. Such effects could also be tested in a LSA where
the energy shifts induced by hypothetical BSM interactions
are included and parameters describing these interactions are
adjusted [5,35].
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SUPPLEMENTAL MATERIAL

ANALYTICAL MODEL: OTHER SCENARIOS

In this Supplemental Material, we investigate the achievable accuracy of fundamental con-

stants determinations in several measurement scenarios using the analytical model described

in Sec. II of the main paper. The first three scenarios discussed below are also addressed

in the main paper (see Sec. III.1, III.2 III.6) using a more rigorous approach relying on

least-squares adjustments.

1. Two transitions in one species

We first consider the case, when only two transitions have been measured, f
(expt)
a and

f
(expt)
b . They have respective experimental uncertainties ua = u(f

(expt)
a ) and ub = u(f

(expt)
b ),

which we assume to be uncorrelated. The uncertainty of the Rydberg constant is taken as

given, with value u(∆h,2018) = ur(R∞,2018). Solving the equations

f (expt)
a = f (theor)

a , f
(expt)
b = f

(theor)
b ,

one immediately obtains ∆m,µ, and it has an uncertainty

u(∆m,µ)
2 = (sbVa − saVb)

−2 ×

(
V 2
b

(
ua

2cR∞

)2

+ V 2
a

(
ub

2cR∞

)2

+ (1)

((fnr,a.u.)aVb − (fnr,a.u.)bVa)
2 u(∆h)

2

)
, (2)

with the notations Vj = (⟨Vδ,12⟩v′,N ′ − ⟨Vδ,12⟩v,N)j , sj = ∂(fnr,a.u.)j/∂(µ12/me) for the two

transitions j = a, b. The analogous expression for ∆nuc,QED will be omitted for brevity.

Table I shows numerical examples of the uncertainties achievable for different two-

transition scenarios in HD+. One main result is that it is favourable to have a positive-

sensitivity transition result available (transition 5). Compared to the case where no such

result is available, one obtains the same uncertainty u(∆m,µ) with a tenfold worse experimen-

tal frequency uncertainty. Alternatively, for the same experimental frequency uncertainty, in

case of availability one obtains a five times smaller uncertainty u(∆m,µ). As eq. (1) indicates,

the attainable uncertainty for the reduced mass ratio µ12/me is limited by the uncertainty

u(∆h,2018) of the Rydberg constant, to a value Min(u(∆m,µ)) ≈ 6×10−10. This is a factor 100

2



u(fa), u(fb) = 0.03 kHz

-3 -2 -1 3210

-6.×10-9

-4.×10-9

-2.×10-9

0

2.×10-9

4.×10-9

6.×10-9

Rydberg constant fractional deviation Δh (10-12)

µ
pd
/m

e
-
(µ
pd
/m

e
) C
O
D
A
T
A
20
18

FIG. 1. Proposed determination of the mass ratio µpd/me from measurements of a frequency pair

(fa, fb) in HD+. Two cases are shown, in purple and magenta. Purple: transitions a: (v = 0, N =

0) → (v′ = 5, N ′ = 1) and b: (0, 3) → (9, 3). Magenta: transitions a: (0, 0) → (5, 1) and b: (9, 1) →

(18, 0). The widths of the magenta and purple bands are due to the assumed experimental frequency

uncertainties u(fa), u(fb). The yellow band indicates today’s (CODATA2018) uncertainty of the

Rydberg constant. The slope and width of a band together with the width of the yellow band

determines the uncertainty of µpd/me. The magenta case is more favourable.

smaller than the CODATA 2018 uncertainty and a factor ≈ 40 smaller than the uncertainty

reported to date from MHI spectroscopy, u([∆m,µ]expt,HD+) ≃ 2.5×10−8. Achieving the limit

Min(u(∆m,µ)) requires the experimental uncertainties ua, ub to be approximately 0.03 kHz.

Note that this level is much more stringent than the transition frequency uncertainty related

to the Rydberg constant uncertainty, u(∆h,2018)× fa,b ≃ 0.4 kHz. Figure 1 displays the ad-

vantage of using both a negative-sensitivity transition and a positive-sensitivity transition

(magenta band).

The last line in Table I reports the result for the experimentally measured transitions

3 and 4 when their actually achieved experimental uncertainties are assumed. The com-
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puted uncertainty u(∆m,µ) ≃ 5.5 × 10−8 is higher than the already achieved uncertainty

u([∆m,µ]expt,HD+). This is so because in the table, ∆nuc,QED was adjusted, while in the re-

ported works, it was not; ∆nuc(HD
+) and ∆QED were set to be zero with uncertainties as

quoted above.

|sbVa−saVb|−1 ua, ub analytical model LSA

contrib. to u (∆m,λ) from ... u (∆m,λ) u(∆HD+) u (∆m,λ)

a b (106) (kHz) ua, ub
(
10−10

)
u (∆h,2018)

(
10−10

) (
10−10

) (
10−10

)
2 3 75 0.3 1500 23 1500 2.3 233

2 3 75 0.03 150 23 150 0.26 180

3 4 8.3 0.3 290 15 290 0.43 202

3 4 8.3 0.03 29 15 33 0.12 136

3 5 1.4 0.3 31 4.9 32 0.11 43

3 5 1.4 0.03 3.1 4.9 5.9 0.094 29

3 6 2.2 0.3 53 7.4 54 0.12 91

3 8 3.0 0.3 80 9.4 80 0.14 125

3 4 8.3 {0.6, 0.46} 550 15 550 0.78 240

CODATA 2018 560 560

TABLE I. Examples of mass ratio determination by measuring a pair of transitions a and b in HD+.

In the analytical model no other data is used. The absolute uncertainty of λ = µpd/me is given in

column 7 as u(∆m,λ), and column 8 is the uncertainty of the fitted nuclear plus QED correction

parameter. In the LSA procedure (last column), non-perfect theory uncertainty correlations are

taken into account and, in addition to the two HD+ data, also the CODATA 2018 values of R∞,

rp, rd, see main paper, sec. III.1. The last data row considers the scenario of two already performed

experiments. We used the abbreviation ∆HD+ = ∆nuc,QED(HD
+).
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2. Three transitions in one species

With three or more transitions available, besides ∆m,µ and ∆nuc,QED, also the Rydberg

constant can be determined. Explicit expressions for u(∆m,µ), u(∆nuc,QED) and u(∆h) can

easily be derived, but will not be displayed here. Table II shows numerical results for

various combinations of transitions. For given experimental frequency uncertainties ua, ub

and uc, those combinations containing the positive-mass-sensitivity transition 5 yield reduced

uncertainties. We find that the three uncertainties u(∆m,µ), u(∆nuc,QED), and u(∆h) drop

continuously with decreasing ua, ub, and uc. In particular, the uncertainty of ∆m,µ drops

below the minimum achievable for the case of only two measured transitions. For example,

u(∆m,µ) ≃ 4 × 10−11, one order lower than for the case of two transitions only, is obtained

if the experimental frequency uncertainties are 1 Hz. For such experimental accuracy, the

uncertainty of the Rydberg constant is determined with ten-fold lower uncertainty than

CODATA 2018’s uncertainty.

We point out that the QED contribution parameter ∆nuc,QED is then determined with

uncertainty 0.01, i.e. approximately 30 times smaller that today’s estimate. For an individ-

ual transition this corresponds to a theoretical uncertainty of e.g. ≃ 60 Hz for transition 3, a

much larger value than the assumed experimental uncertainty. The reason for the different

magnitude is the correlation between the QED deviation function ⟨Vδ,12⟩v′,N ′ −⟨Vδ,12⟩v,N and

the transition frequency f(v,N → v′, N ′).

3. Three Species

Suppose precision spectroscopy is also performed on D+
2 . Data from it alone will provide

the deuteron-electron mass ratio md/me, and thus a consistency check is possible with

the independent value obtained from combined HD+ and H+
2 measurements. Furthermore,

∆nuc,QED(D
+
2 ) is obtained. Since

∆nuc,QED(D
+
2 ) = α−5(2π/3)a−2

0

1

2
× 2∆(r2d) + ∆QED + 2∆nuc,h.o.(d) ,

the comparison with eqs. (16,17) (main paper) shows that

∆nuc,QED(D
+
2 ) = 2∆nuc,QED(HD

+)−∆nuc,QED(H
+
2 ) . (3)
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Transitions ua, ub, uc contrib. to u (∆m,λ) from ... u (∆m,λ) u (∆h) u (∆nuc,QED)

a b c (kHz) ua
(
10−10

)
ub
(
10−10

)
uc
(
10−10

) (
10−10

) (
10−12

)
2 3 4 {0.15, 0.6, 0.46} 1300 700 2600 3000 330 20

3 4 5 {0.3, 0.3, 0.3} 98 39 81 130 55 2.7

3 4 5 {0.03, 0.03, 0.03} 9.8 3.9 8.1 13 5.5 0.27

3 4 5 {0.01, 0.01, 0.01} 3.3 1.3 2.7 4.4 1.8 0.091

3 4 5 {0.003, 0.003, 0.003} 0.98 0.39 0.81 1.3 0.55 0.027

3 4 5 {0.001, 0.001, 0.001} 0.33 0.13 0.27 0.44 0.18 0.0091

3 5 6 {0.003, 0.003, 0.003} 0.15 0.85 0.79 1.2 0.41 0.020

3 5 8 {0.003, 0.003, 0.003} 0.24 0.64 0.55 0.88 0.31 0.016

3 6 7 {0.003, 0.003, 0.003} 0.27 10 5.5 12 3.0 0.16

3 6 8 {0.003, 0.003, 0.003} 0.47 2.1 1.9 2.9 0.70 0.037

CODATA 2018 560 1.9

TABLE II. Analytical model: examples of the determination of both the reduced mass λ = µpd/me

and the Rydberg constant by measuring three transitions in HD+. In column 8, u(∆m,λ) is the

absolute uncertainty of λ. In column 9, u (∆h) = ur(R∞) is the fractional uncertainty of the

fitted Rydberg constant. The first case in the table (data row 1) considers the three rovibrational

transitions measured to date. In this case, because the Rydberg constant is among the fitted

constants, no competitive uncertainty is obtained for the fitted mass ratio.

Thus, data from D+
2 does not provide new information concerning the radii. One cannot

simultaneously determine the unknown QED contribution and obtain the radii rp , rd indi-

vidually. Still, this expression provides a very important consistency check with the result

from combined H+
2 , HD+ measurements. The three-species scenario is also analyzed in

Sec. III.6 of the main paper, this time including data from atomic hydrogen spectroscopy.

A different conclusion is then reached.
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4. Including one triton-containing species

If e.g. HT+ is measured, apart from µpt/me, the fit also yields ∆nuc,QED(HT
+), which is

given by

∆nuc,QED(HT
+) = α−5(2π/3)a−2

0

1

2
×∆(r2p + r2t ) + ∆QED +∆nuc,h.o.(t) .

The recoil correction of this species is assumed to be treated in the same wave as described

earlier. One can combine this with the H+
2 results, eq. (16) in the main paper, to obtain

∆(r2t )−∆(r2p) with minimum uncertainty given by the uncertainty of ∆nuc,h.o.(t). The latter

is dominated by the triton polarizability correction E
(5)
pol, for which no calculation has been

reported, although the electric dipole polarizability of the triton was calculated in [1]. One

may adopt the estimate given in [2]:

E
(5)
pol ≈ − Efns

1000
± 100% ,

where Efns is the leading-order finite-nuclear-size correction. This yields

u(δfnuc,h.o.(t)) =
1

1000
× 2cR∞

2π

3

(
rt
a0

)2
1

2
(⟨Vδ,pt⟩v′,N ′ − ⟨Vδ,pt⟩v,N) ,

= 7.6 kHz× (⟨Vδ,pt⟩v′,N ′ − ⟨Vδ,pt⟩v,N) ;

u(∆nuc,h.o.(t)) =
1

1000
× α−52π

3

(
rt
a0

)2
1

2
.

This implies that ∆(r2t ) − ∆(r2p) could then be deduced with an uncertainty of about

r2t /1000 ≃ 0.003 fm2, which would already represent a considerable improvement compared

to today’s experimental uncertainty. The current triton radius value is r
(expt)
t = 1.755(86) fm

from electron scattering experiments [3]. Its absolute uncertainty is substantially larger than

that of rp and rd, eq. (3) in the main paper. Calculation of the triton polarizability contri-

bution would allow reaching even higher precision.

In nuclear physics, the triton is a nucleus of substantial interest. Its point charge radius

δrC , that is related to the charge radius, can be computed using effective field theory [4, 5]

with competitive uncertainty. A recent calculation of δr
(theory)
C yields, when combined with

the experimental 3He charge radius, a preliminary value rt = 1.773(9) fm [5]. Precision data

on H+
2 and HT+ could verify this prediction and also future, much improved predictions.

Thus, HT+ spectroscopy could be an alternative to future laser spectroscopy of atomic

tritium [6].
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5. The group of heteronuclear MHI

If DT+ is also included to complete the triad of heteronuclear MHI, one will obtain µdt/me

and ∆nuc,QED(DT
+), given by

α5∆nuc,QED(DT
+) = (2π/3)a−2

0

1

2
×∆(r2d + r2t ) + ∆QED +∆nuc,h.o.(d) + ∆nuc,h.o.(t) .

Combination with the HT+ result yields

α5∆nuc,QED(DT
+)− α5∆nuc,QED(HT

+) = (2π/3)a−2
0

1

2
×∆(r2d − r2p) + ∆nuc,h.o.(d) .

This is the same result as eq. (18) in the main paper, obtained from H+
2 and HD+. Similarly,

combining DT+ and HD+ results one obtains ∆(r2t − r2d) (modulo the higher-order nuclear

correction for t). This means that one can in principle obtain the information on the charge

radii without performing measurements on the homonuclear ions. Such an approach may

have some experimental advantages. Alternatively, one can verify experimentally consistency

of independent measurements performed on four different MHI, e.g. H+
2 , HD

+, HT+, DT+.
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